DATE:

June 26, 2013

TO:

Jerry Hensley

Chief, Strategic Planning and Quality Assurance Section

FROM:

Roger K. Lupo, Chief, Radiological Assessment Unit

Victoria Brandt, Associate Health Physicist Musicia &

SUBJECT:

RAU Staff Soil Sampling, Treasure Island, Site 12

March 20-21, 2013

UPDATE:

September 23, 2013

LIST OF FIGURES	
Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1	
Figure 2: Treasure Island, Site 12, Gateview Avenue, Location 2	
LIST OF TABLES	
Table 1: GPS Data for Sample Points A - E	
Table 2: Survey Instruments	
Table 3: Data - Sample A	
Table 4: Laboratory Results - Sample A	
Table 5: Data - Sample B	
Table 6: Laboratory Results - Sample B.	
Table 7: Data - Sample C	
Table 8: Laboratory Results - Sample C	
Table 9: Data - Sample D.	
Table 10: Laboratory Results - Sample D	
Table 11: Data - Sample Point E	
Table 12: Laboratory Results - Sample E	
Table 13: Varskin Modeling Summary	
Table 14: Laboratory Results Summary	B-2
LIST OF PHOTOS	
	1.7
Photo 1: Treasure Island, Site 12, Sample Point E, Sod Block	
Photo 3: Treasure Island, Point E, Radioactive Fragment in Bucket	
Photo 3: Radioactive Fragment Detail	1
LIST OF APPENDICES	
Appendix A: Calibration Certificates	A-2
Appendix B: Sample Analysis Results	B-2
Annendix C: Varskin Analysis	C-1

RAU Staff Soil Sampling, Treasure Island, Site 12

ABBREVIATIONS, DEFINITIONS AND EQUATIONS

cm Centimeter

cpm Counts per minute

DWRLB Drinking Water and Radiation Laboratory Branch

GPS Global positioning system

hr hour

MCA Multi-channel analyzer

MDA Minimum detectable activity

MDA₉₅ Minimum detectable activity at the 95% confidence level

mm Millimeter

NaI Sodium Iodide, doped with Thallium, used in scintillation detector

NIST National Institute of Standards and Technology

NORM Naturally occurring radioactive materials

pCi/g pico curies per gram, unit of concentration

R roentgen, measure of radiation energy absorption per unit mass of air

RAU Radiological Assessment Unit

RHB Radiologic Health Branch

ROI Radionuclide of Interest, plural ROIs

σ Sigma is the standard deviation, Std. Dev. of the measurements of interest.

Std. Dev. Standard Deviation, $\sigma = \sqrt{\frac{\sum_{i} (x_{i} - x_{i})}{\sum_{i} (x_{i} - x_{i})}}$

 $\sigma = \sqrt{\frac{\sum_{i} (x_{i} - x_{avg})^{2}}{N-1}}$

where x_i is measurement, N is number of measurements; x_{avg} is the

average of all measurements.

TI Treasure Island

RAU Staff Soil Sampling, Treasure Island, Site 12

INTRODUCTION

The Radiological Assistance Unit (RAU) assisted with the onsite Treasure Island (TI), Site 12 survey effort by collecting soil samples at five locations with exposure rate measurements significantly exceeding background measurements. Radiologic Health Branch (RHB) surveyors found these locations using Ludlum Model 19 exposure rate instruments, labeled A – F, during surveys on March 18-19, 2013. RAU sent soil samples to the Drinking Water and Radiation Laboratory Branch (DWRLB) for gamma spectroscopic analysis following 21-day ingrowth.

SAMPLING DATES

March 20-21, 2013

SURVEY STAFF

The following Radiological Assessment Unit Health Physicists performed surveys:

- Roger Lupo, supervisor, lead sampler
- Jeff Wong, surveyor, sampler
- Victoria Brandt, recorder, sample custodian
- Rajiv Mishra, surveyor

SURVEY LOCATIONS: TREASURE ISLAND, SITE 12

RAU staff collected soil samples in two general locations. Location 1 was in the curve of Gateview Avenue, west of the Avenue B intersection. Surveyors found four elevated measurement points, labeled

A – D, in this location, see Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1.

Global Positioning System (GPS) data for each sample point was collected using a Garmin GPS device can be found in Table 1: GPS Data for Sample Points A - E. GPS data depends upon the particular instrument used; the tolerance of the particular instrument, and the satellites available at the time the measurement was collected. Re-measurement of the sample point locations can

Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1

RAU Staff Soil Sampling, Treasure Island, Site 12

vary within 10-40 feet.

Table 1: GPS Data for Sample Points A - E

Sample			
Point	Longitude	Latitude	
A	W 122° 22.568'	N 37° 49.422'	
В	W 122° 22.569'	N 37° 49.425'	
С	W 122° 22.580'	N 37° 49.431'	
D	W 122° 22.571'	N 37° 49.426'	
E	W 122° 22.565′	N 37° 49.756'	

Location 2 was in a green belt area southwest of the intersection of Gateview Avenue and Bayside Drive. One elevated measurement was found in this location.

Figure 2: Treasure Island, Site 12, Gateview Avenue, Location 2

SURVEY ACTIONS

At each point, A - E, RAU staff collected GPS data, see Table 1: GPS Data for Sample Points A - E, measurements with hand held radiation survey instruments and soil samples. Hand held survey equipment used see Table 2: Survey Instruments. The Ludlum Model 19 measurements were in units of micro roentgen per hour ($\mu R/hr$). The Ludlum Model 2221 measures on units of counts per minute (cpm).

Table 2: Survey Instruments

	Serial Number	Calibration Date	Type	Background
Ludlum Model 19	42969	14-Feb-2013	microR ratemeter	7 μR/hr
Ludlum Model 2221	163683		Scaler/Ratemeter †	
• Ludlum Model 44-10	PR169437	24-Aug-2012	 NaI scintillation detector 	6832 cpm
† Count rates greater than 1,000	,000 cpm were mea	sured at 0.1 minute	, and then converted to counts per n	ninute (cpm).

RAU and Tetra Tech personnel attended the isolation of the radioactive fragment found at sample point E. Following isolation of the fragment, RAU and Tetra Tech personnel agreed that RAU would continue to location 1. Tetra Tech personnel would finish remediation

At each of points A – D, RAU isolated the point of greatest count rate using a 2"x2" NaI detector, cleared the sod, and then collected a soil sample. RAU mixed and divided each soil sample into two labeled bags, one for DWRLB analysis and one for Tetra Tech analysis. Before sampling, RAU decided if soil with radioactive fragment(s) was excavated during sampling, the split with the radioactive fragment(s) would be given to Tetra Tech. DWRLB subsequently identified fragments at sample point A and this sample was not given to the Navy's contractor.

LABORATORY ANALYSIS

All samples were analyzed using gamma spectroscopy following a minimum 21-day in-growth period by CDPH's Drinking Water and Radiation Laboratory Branch (DWRLB) Branch. RAU requested the in-growth period to optimize detection and characterization of radium 226, through analysis of gamma producing progeny bismuth 214 (Bi-214). Laboratory results are summarized following sampling actions for each sample point and summarized in Table 14: Laboratory Results Summary. For Minimum Detectable Activity (MDA) values for each sample, see copies of laboratory results can be found in Appendix B: Sample Analysis and Results.

The results of the laboratory analysis of soil samples collected in these five sample points show that some of the contamination was in the form of discrete particles, with Sample Point E having a larger metallic backed fragment, see Photo 3: Radioactive Fragment Detail. The soil contamination for other sample points may have originated with discrete particles, but no fragments were isolated by RAU's sampling. Radium contamination was identified in soil right below the grass and extending at least 30 cm (12 inches) below the grass. Vegetation growing over the radioactive fragments was not tested for radioactive contamination through uptake by the plant roots. Cesium 137 concentrations for nine samples were below the MDA. The Cs-137 concentrations in the remaining two samples were considered ambient background levels.

SPECIFIC SAMPLING AND LABORATORY RESULTS

Sampling actions for each sample point are discussed below, followed by the laboratory results for the sample(s) collected. All soil samples collected by RAU at Sample Points A-D were divided and, bagged for RAU laboratory analysis and for Tetra Tech.

SAMPLE POINT A

Sample point A lies near a concrete walkway adjacent to Building 1303, see Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1.Exposure rate measurements made at the location are summarized in Table 3: Data - Sample A. GPS location can be found in Table 1: GPS Data for Sample Points A - E. Following removal of the surface sod layer, RAU collected a soil sample from a 7-10 cm (3-4 inch) diameter hole at 15 cm (6 inch) depth.

The following day, Tetra tech personnel remediated sample point A by excavating a hole measuring approximately 45 cm by 45 cm by 30cm depth. RAU collected two soil samples, the first during remediation and the second following remediation.

RAU Staff Soil Sampling, Treasure Island, Site 12

Table 3: Data - Sample A

	Pre-remediation	Pre-remediation	
	Ludlum Model 19	Ludlum Model 44-10 †	Post-remediation
Detector height above sod	(µR/hr)	(cpm)	(cpm)
Contact	1,600	1.377x10 ⁶	9.76x10 ³
30 cm	250	2.72x10 ⁵	as as as as
100 cm	55	5.59x10 ⁴	

[†] Count rates greater than 1,000,000 cpm were measured at 0.1 minute, and then converted to counts per minute (cpm). No dead time corrections were made.

Small discrete particles $(3,500~\mu\text{R/hr}\ \text{on contact})$ were collected by RAU during pre-remediation soil sampling (sample A) and sent to DWRLB. The radioactive fragments were sieved out of the soil during the standard sample preparation. The results of the laboratory analysis, with the radioactive fragments removed, are summarized in Table 4: Laboratory Results - Sample A. Cs-137 concentrations were less than MDA for all samples collected in this location.

Table 4: Laboratory Results - Sample A

Descriptive Name	Sample ID	Gamma Measurement (mR/hr)	Cs-137 Concentration (pCi/g)	Ra-226 Concentration (pCi/g)	K-40 Concentration (pCi/g)
	Sample 1D	(1111/111)	(pCi/g)	(pCi/g)	(pci/g)
Pre-Remediation				,	
Treasure Island Site					
12, Sample A	R98805	3.5	-0.24†	7898	6.53
During Remediation					
TI Sample A –					
During Remediation	R96216		-0.14†	706	10.6
Post-Remediation					
TI Sample A – Post					
Remediation	R96217	NA 604 300 000 NA	0.00†	1.02	10.3

[†] Concentrations are less than the MDA.

Note that because of the much higher count rates for Sample A, see Table 4: Laboratory Results - Sample A, the MDA₉₅ is much greater for all nuclides due to the greater concentration of the Ra-226 (Bi-214). This characteristic is inherent to the type and sensitivity of the detection equipment when counting such high concentrations and does not indicate failure of the instrument or analysis procedure.

SAMPLE POINT B

Sample point B was near the front sidewalk on the northern border of the lawn between the western most two driveways of building 1303; see Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1. GPS location can be found in Table 1: GPS Data for Sample Points A - E. Exposure rate measurements made at the location are summarized in Table 5: Data - Sample B.

The following day, Tetra Tech personnel remediated sample point B by excavating a hole measuring approximately 30 cm by 30 cm by 30 cm depth. RAU collected one soil sample following remediation.

Table 5: Data - Sample B

	Pre-remediation Ludlum Model 19	Pre-remediation Ludlum Model 44-10 †	Post-remediation
Detector height above sod	(µR/hr)	(cpm)	(cpm)
Contact	17	1.61x10 ⁴	7.62×10^3
30 cm		8.01x10 ³	
100 cm	7.0	6.78×10^{3}	

The results of the laboratory analysis are summarized in Table 6: Laboratory Results - Sample B. Cs-137 concentrations were less than MDA for all samples collected in this location. The post-remediation Ra-226 concentrations are greater than expected for primordial concentration.

Table 6: Laboratory Results - Sample B

		Gamma Measurement	Cs-137 Concentration	Ra-226 Concentration	K-40 Concentration
Descriptive Name	Sample ID	(mR/hr)	(pCi/g)	(pCi/g)	(pCi/g)
Pre-Remediation					
Treasure Island Site					
12, Sample B	R98806	0.45	0.022†	100	10.6
Post-Remediation					
TI Sample B – Post					
Remediation	R96218		0.036†	3.36	10.2

[†] Concentrations are less than the MDA.

SAMPLE POINT C

Sample point C was located next to the sidewalk, near the street corner, see Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1. Exposure rate measurements made at the location are summarized in Table 7: Data - Sample C. GPS location can be found in Table 1: GPS Data for Sample Points A - E. On March 20, 2013, following removal of the surface sod layer, RAU collected a soil sample from a 7-10 cm (3-4 inch) diameter hole at 15 cm (6 inch) depth. On the following day, Tetra Tech remediated this location and isolated a radioactive fragment.

Table 7: Data - Sample C

	Pre-remediation	Pre-remediation	
	Ludlum Model 19	Ludlum Model 44-10 †	Post-remediation
Detector height above sod	(µR/hr)	(cpm)	(cpm)
Contact	240	2.80x10 ⁵	8.94x10 ³
30 cm	INCH MAN PAR MAN	9.50x10 ⁴	NAME AND SOUR SAME
100 cm	28	2.69x10 ⁴	No. 200 NO. 200 NO.

The results of the laboratory analysis, pre-remediation and post-remediation, are summarized in Table 8: Laboratory Results - Sample C. Cs-137 concentrations were less than MDA for all samples collected in this location. The post-remediation Ra-226 concentrations are greater than expected for primordial concentration.

Table 8: Laboratory Results - Sample C

Descriptive Name	Sample ID	Gamma Measurement (mR/hr)	Cs-137 Concentration (pCi/g)	Ra-226 Concentration (pCi/g)	K-40 Concentration (pCi/g)
Pre-Remediation					
Treasure Island Site					
12, Sample C	R98807	0.45	0.02†	75.8	9.49
Post-Remediation					
TI Sample C – Post				***************************************	
Remediation	R96219	400 MA 100 MA 100 MA	0.01†	38.0	9.89

[†] Concentrations are less than the MDA.

SAMPLE POINT D

Sample point D was near the sidewalk on Gateview Avenue, within the drip line of a large tree, see Figure 1: Treasure Island, Site 12, Gateview Avenue, Location 1, Exposure rate measurements made at the location are summarized in Table 9: Data - Sample D. GPS location can be found in Table 1: GPS Data for Sample Points A - E. A small radioactive fragment was collected during sampling. The split with the radioactive fragment was given to Tetra Tech for analysis and future disposal.

Table 9: Data - Sample D

	Pre-remediation Ludlum Model 19	Pre-remediation Ludlum Model 44-10†	Post-remediation
Detector height above sod	(µR/hr)	(cpm)	(cpm)
Contact	33	2.96x10 ⁴	$6.07x10^3$
30 cm		9.38x10 ³	AND SIGN WAS THE SIGN
100 cm	7.0	$6.27x10^{3}$	MA GOS MAS MAS

The results of the laboratory analysis are summarized in Table 10: Laboratory Results - Sample D. For this location there was no remediation performed, therefore there were no post-remediation samples collected. Cs-137 concentrations were greater than MDA for all samples collected in this location.

Table 10: Laboratory Results - Sample D

Sample ID	Gamma Measurement (mR/hr)	Cs-137 Concentration (pCi/g)	Ra-226 Concentration (pCi/g)	K-40 Concentration (pCi/g)
R98808	0.10	0.02	0.64	9.31
***************************************		••••••		· · · · · · · · · · · · · · · · · · ·
sample collecte	d.			
	R98808	Measurement Sample ID (mR/hr)	Sample ID Measurement (mR/hr) Concentration (pCi/g) R98808 0.10 0.02	Sample IDMeasurement (mR/hr)Concentration (pCi/g)Concentration (pCi/g)R988080.100.020.64

[†] Concentrations are greater than the MDA.

SAMPLE POINT E

Sample E was in the a greenbelt area southwest of the intersection of Gateview Avenue and Bayside Drive, approximately 6.1 meters (20 feet) from a bus stop bench, see Figure 2: Treasure Island, Site 12, Gateview Avenue, Location 2. Exposure rate measurements made at the location are summarized in

Table 11: Data - Sample Point E. GPS location can be found in Table 1: GPS Data for Sample Points A - E.

Tetra Tech personnel assisted in excavating sample E. A 30 cm by 30 cm square was cut in the sod, and then the sod block was flipped onto the plastic surrounding the hole. The sod block was approximately 11 cm thick. Measurement of the bottom of the sod indicated that the radioactive source was not in the sod block, Photo 1: Treasure Island, Site 12, Sample Point E, Sod Block.

Photo 1: Treasure Island, Site 12, Sample Point E, Sod Block

Soil dug from the hole was placed in clean 5-gallon buckets until the source was detected in a bucket. Incremental separation of the soil isolated the thin metallic radioactive fragment approximately 1.5 cm diameter see Photo 3: Treasure Island, Point E, Radioactive Fragment in Bucket and Photo 3: Radioactive Fragment Detail.

Table 11: Data - Sample Point E

	Pre-remediation	Pre-remediation	
	Ludlum Model 19	Ludlum Model 44-10 †	Post-remediation
Detector height above sod	(µR/hr)	(cpm)	(cpm)
Contact	4,900	2.77x10 ⁶	7.27×10^{3}
30 cm		7.33×10^{5}	
100 cm	140	2.69x10 ⁴	DE DE DE DE DE

[†] Count rates greater than 1,000,000 cpm were measured at 0.1 minute, and then converted to counts per minute (cpm). No dead time corrections were made.

Following isolation of the radioactive fragment, RAU staff and Tetra Tech personnel agreed to meet at Location 1, adjacent to the curve of Gateview Avenue, west of the Avenue B intersection, to sample points A – D. RAU staff volunteered to provide Tetra Tech personnel with splits of samples RAU collected. The Tetra Tech personnel decided to finish remediating the sample point E to background measurements, before moving on to Location 1.

RAU Staff Soil Sampling, Treasure Island, Site 12

Page 10

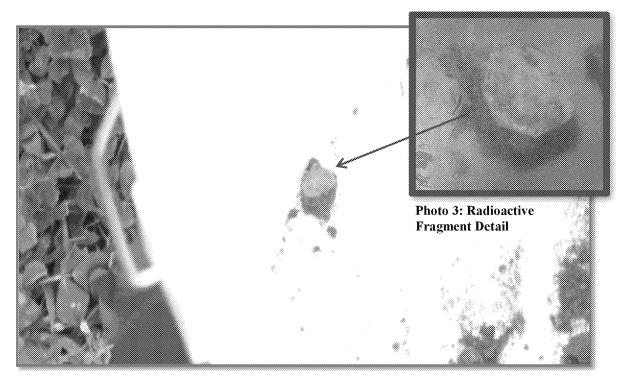


Photo 3: Treasure Island, Point E, Radioactive Fragment in Bucket

The results of the laboratory analysis are summarized in Table 12: Laboratory Results - Sample E. For this location there was no remediation performed, therefore there were no post-remediation samples collected. Cs-137 concentrations were less than MDA for all samples collected in this location. The post-remediation Ra-226 concentrations are greater than expected for primordial concentration.

Table 12: Laboratory Results - Sample E

Descriptive Name	Sample ID	Gamma Measurement (mR/hr)	Cs-137 Concentration (pCi/g)	Ra-226 Concentration (pCi/g)	K-40 Concentration (pCi/g)
Pre-Remediation					
Treasure Island Sample E, Bottom	R98803	0.11	-0.03†	30.0	10.4
TI Sample E, Bottom of Sod, 11 cm depth	R98804	0.15	-0.06†	405	9.83
Post-Remediation					
TI Sample E – Post Remediation	R96215		0.01†	6.79	10.9

[†] Concentrations are less than the MDA.

Before remediation, the exposure rate was 4,900 μ R/hr on contact with the grass. A radioactive fragment appearing as a 1.5 cm octagonal radioactive disk was found, see Photo 3: Radioactive Fragment Detail. The maximum concentration found in the top 15 cm of soil was 405 pCi/g. A second

sample, ID R96215, collected from the bottom of the remediated hole at 20 cm depth had a radium concentration of 6.79 pCi/g.

VARSKIN 4 ANALYSIS – SAMPLE E

Of concern is the possible dose to the public, should an individual handle an unshielded radioactive fragment, such as the fragment found in Sample Point E. The potential beta dose to such an individual was modeled using the Varskin 4 software, assuming an irradiation time of one hour, one square centimeter skin irradiation area, and 2-millimeter source to skin distance. The beta and gamma radium emitting progeny bismuth 214 (Bi-214), lead 214 (Pb-214), lead (Pb-210), and bismuth 210 (Bi-210). Varskin uses a calculated "Source Strength" equal to source concentration per square centimeter. The photon dose rate combines the exposure of gamma and x-rays. The results are summarized in Table 13: Varskin Modeling Summary and the analysis can be found in Appendix C: Varskin Analysis.

Table 13: Varskin Modeling Summary

Isotope	Bi-214 (rad/hr)	Pb-214 (rad/hr)	Bi-210 (rad/hr)	Pb-210 (rad/hr)	All Sources (rad/hr)
Beta Dose Rate	420	721	450	0	1,590
Photon Dose Rate	3.5	1.9	0	1.4	6.8
Total	423	723	450	1.4	1,600

According to the Center for Disease Control (CDC) fact sheet titled "Cutaneous Radiation Injury: Fact Sheet for Physicians¹" a one hour skin contact with the fragment could cause radiation burns, hair loss and possible ulceration.

_

http://www.bt.cdc.gov/radiation/pdf/criphysicianfactsheet.pdf

CONCLUSION

The soil sampled was during a cursory survey of common areas surrounding residential units in Area 12. The RHB survey plan was designed to detect discrete radioactive fragments immediately below the surface, not distributed low-level radioactive soil contamination.

The results of the laboratory analysis of soil samples collected at these five locations with elevated measurements show radium soil contamination exists in soil above the depth of the actual source location. Locations where soil samples were collected at multiple depths showed vertical distribution of radium contamination. Additional remediation needs to be performed at locations B, C and E. In addition, additional sampling needs to be performed at location D since RHB collected no post-remediation samples. Soil sampling to establish the lateral or horizontal spread of radium contamination in the soil was beyond the scope of RAU's sampling plan. Additional sampling is necessary to evaluate the lateral radium contamination spread in the soil.

Argonne National Laboratory's RESRAD 6.5 computer dose modeling using the most conservative residential farmer model indicates that the predominant dose pathways for radium contamination in the soil are through plant ingestion and external gamma radiation. Vegetation growing over or near the radioactive fragments was not tested for radioactive contamination through uptake by the plant roots. Information provided to RHB indicates that gardening is not permitted by TI residents. Vegetation sampling was beyond the scope of the RAU survey.

Cesium 137 concentrations for nine samples were below the MDA. The Cs-137 concentrations in the remaining two samples were consistent ambient background levels.

Because the location of the radioactive fragments is inconsistent with the Historical Radiological Assessment (HRA) and the updates to the HRA, and because the fragments may have been deposited in those locations by prior construction activities and earthwork, it is recommended that the Navy perform a radiological characterization survey to identify and quantify low levels of radioactivity as soon as possible. To quantify accurately potential radiological exposures to TI residents, a detailed radiological dose model will need to be performed. Further evaluation should be made of the probability of a member of the public, especially critical members of the population (for example, children), picking up a radioactive fragment and being exposed.

Appendix A: CALIBRATION CERTIFICATES

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

N MEASUREMENTS, INC.

Sweetwater, TX 79556, U.S.A. Lenoir City, TN 37771, U.S.A.

501	Oak	Street

231 Sam Rayburn Parkway

00,	Odn	Oncor	
325.	235.	5494	

لسب		
	865-270-8962	

CUSTO	DMER SUTTER H	EALTH		·····		C	RDER NO	O. 20	216542/388117
Mfg.	Ludium Meas	urements, Inc.	Model				No	479	69
Mfg.			8 di. 3 . t				No.	•	
Cal. Da	ite 14-	Feb-13 Cal C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Cal. In				
Check ma	ark Vapplies to app	licable instr. and/or det			∕73 °F				701.8 mm Hg
		trument Received	•	•	/				
✓ F/S ✓ Aud		✓ Meter Zero ✓ Reset ck. Alarm Sett	ing ck.	Window Batt. ck.	ind Subtract Operation (Min. Volt)	2.2_VDC	₹ G		nearity
		with LMI SOP 14.8 rev		terrori.	in accordance v		Times	a to a lad	n
Instrumen	nt Volt Set <u> </u>	V Input Sens.	<u> </u>	Oper.	V at	m	V Dial F	₹atio	**
	HV Readout (2 points) Ref./Inst.	//		V Ref./Ins	t		/	V
COMM	ENTS:						,ovodennesoooooooonidense,	.00000000000000000000000000000000000000	***************************************
Gamma Ca	libration: GM detectors p	positioned perpendicular to	***************************************	000000000000000000000000000000000000000	acararridobisacararridobistanna actido de arteres de	660anmot600564anmot60006ahmnr	18107	~	·
	RANGE/MULT		EFERENCE AL, POINT		STRUMENT F S FOUND RE			RUMENT ER READ	
	5000	4000		• ' '	3500		1 7 1 1 1 1	4000	
	5000		μR/hr		900			1000	
	500	400 μ	R/hr = 75BW6~	1	320	**********	manager a sea seasonite	400	
	500		µR/hr		<u>\$</u> \$0			<i>[0</i> 0	
	250		₹/hr = 37 200g-20	<u> </u>	160			200	***************************************
	250		µR/hr		79 ₃ _		anno constanto o	105	····
	50	75 80 1 890	cpm		}	A		<u> 40</u>	
	50 25	3700	cpm		<u>4</u> 274		***************************************	<u>/0</u>	
	25	920	cpm cpm	Andrewson American	5.2		and the residence of	<u> </u>	····
			<u> CDM</u>		Q1 bee		Pannals		f Electronically
***************************************	*Uncertainty within ± 10 REFERENCE	INSTRUMENT	INSTRUMENT		REFERENCE	***********************	TRUMEN	000000000000000000000000000000000000000	ISTRUMENT
Digital Readout	CAL. POINT	RECEIVED	METER READI	. \$	CAL. POINT		EIVED		ETER READING*
200000000000000000000000000000000000000	000000000000000000000000000000000000000	***************************************	***************************************				DOCUMENTO DOCUME	×	
iner Internatio	onal Standards Organization	ne above instrument has been of members, or have been derive uirements of ANSI/NCSL Z540	ed from accepted values of ne	stural physical consi		rived by the ratio	type of callb	bration technique	
		d/or Sources: 05 10E551E552 (5719CO] Y982
Alpl	ha S/N		Beta S/N			Other	***************************************		
√ m 5	000 S/N23	8275	Oscilloscope S/N			∡ Multimet	er S/N	70	602489
Calibrate	d By:	soundarlo	<u>~</u>		Date	14	166	-{3	
Reviewed	d By:	m (7)	<u> </u>		Date	15 Fe	<u>500</u>		
	ate shalf not be reproduced a A 06/12/2012 Pag	except in full, without the writter	n approval of Ludium Measure	ements, Inc.	AC Ins Only	t. Passe		; (Hi-Pot) and (Continuity Test

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH RADIOLOGIC HEALTH BRANCH

1500 Capitol Avenue, Sacramento, CA

Detector Efficiency

Meter:

Mfg. Ludlum

Model: 19

Serial # 42969

Calibration Date:

11-Jan-2012

Detector:

Mfg. N/A

Model: N/A

Serial # None

Due Date:

Jan 2013

NIST TRACEABLE SOURCES

Isotope	Serial #	Cert. Date	Activity	Units	DPM
Am-241	5588	3/1/2001	1.075	μCi	2345274
Ba-133	5589	3/1/2001	1.048	μCi	1137715
Cs-137	5590	3/1/2001	1.010	μCi	1746372

Measurement Standards and test equipment used are traceable to the National Institute of Standards and Technology or to Physikalisch-Technische Bundesanstalt (PTE), to the extent allowed by the Institute's calibration facilities.

EFFICIENCY CALCULATIONS

Source Distance:

0.5 in.

Background		Isotope: Am-241	Isotope: Ba-133	Isotope: Cs-137
Measurement		Measurement	Measurement	Measurement
microR/h		microR/h	microR/h	microR/h
7.00	1	100.0	172.5	112.5
8.00	2	100.5	175.0	112.5
7.50	3	95.0	172.5	115.0
8.50	4	100.5	175.0	115.0
7.75	5	100.5	175.0	117.5
•••••	Average			
7.75	(microR/h)	99.3	174.0	114.5
	Std. Dev.			
0.56	(microR/h)	2.4	1.4	2.1
***************************************	***************************************	осиминаций осторожения в принципального принципа	***************************************	. :

	(microR/h)	(microR/h)	
Efficiency	0.000039 /dpm	0.000146 /dpm	 (microR/h)/dpm

% Efficiency	0.0039%	for	Am-241
% Efficiency	0.0146%	for	Ba-133
% Efficiency	0.0061%	for	Cs-137

COMMENTS:

 4π Emission (DPM) is decayed to printing date.

Health Physicist: <u>Uceforia X Branclf</u> Victoria Brandt

Reviewed By:

January 17, 2012

Date Printed: 1/17/2012

Version 1.5.2

Efficiency (3)

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH RADIOLOGIC HEALTH BRANCH

1500 Capitol Avenue, Sacramento, CA

Detector Response

Meter:

Mfg. Ludlum

Model: 19

Serial # **42969**

Calibration Date:

14-Feb-2013

Detector:

Mfg. N/A

Model: N/A

Serial # None

Due Date:

Feb 2014

NIST TRACEABLE SOURCES

Isotope	Serial#	Cert. Date	Cei	rt. Activity	Current Activity	DPM
Am-241	5588	3/1/2001	1.075	μCi	1.054 μCi	1
Cs-137	5590	3/1/2001	1.010	μCi	0.7662 μCi	1
Ra-226	5905	3/1/2001	1.021	μCi	1.016 µCi	1

Measurement Standards and test equipment used are traceable to the National Institute of Standards and Technology or to Physikalisch-Technische Bundesanstalt (PTE), to the extent allowed by the Institute's calibration facilities.

RESPONSE CALCULATIONS

Source Distance:

0.5 in.

Background		Isotope: Am-241	Isotope: Cs-137	Isotope: Ra-226
Measurement		Measurement	Measurement	Measurement
uR/hr		uR/hr	uR/hr	uR/hr
5.5	1	100	100	340
6.25	2	105	100	345
6.5	3	100	103	335
6.25	4	100	105	340
6.5	5	100	95	330
	Average			
6.2	(uR/hr)	101	101	338
	Std. Dev.			
0.4	(uR/hr)	2	4	6
	Net			
	Response	89,9 (uR/hr)/μC	i 123.2 (uR/hr)/μC	i 326.7 (uR/hr)/μCi

COMMENTS:	Emis	sion (DPM) is decayed to printing d	ate.	
Llagith Dham	inict.	Willewa L. Branch	Reviewed By: Pages Trace	8. 4%
ricaiui riiysi	icist.	Victoria Brandt	Reviewed by.	6
ľ)ate:	March 11 2013	Date: $3 / / \cdot 20/3$	

Date Printed: 3/11/2013

Response Check (3)

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH RADIOLOGIC HEALTH BRANCH

1500 Capitol Avenue, Sacramento, CA

Certificate of Calibration

Meter:	Mfg.	Ludlum	Model:	2221	Serial #	163683	x.	Date:	: 24-Aug	j-2012
Detector:	Mfg.	Ludlum	Model:	44-10	Serial #	PR169437	* 	Due Date:	Aug	2013
Notice Control of the	***************************************	3577799550000000000000000000000000000000	TEST, MI	EASUREME	NT AND D	IAGNOST.	IC EQUIPA	IENT		
		NIST Traceal	ble Sources					Referenc	e Equipment	
Isotope	Serial #	Cert. Date /	Activity	Units	DPM		Mfg	Model	Serial#	Cal. Due Date
	5588	*	1.075		2343013		Ludlum	500	142041	3/31/2013
	5589		1.048		1093539					
	5590	*************	1.010		1722377	***	4			
Measuremen	it Standards ar	id test equipment		cable to the Nat the extent allow				or to Physikal	isch-Technische E	lundesanstalt
X	Battery Ck.	X	Mech. Ск.	N/A Z	Zero Ck.	Х	Geotropism	N/A	Overload	
		X /	Audio Ck.	X	Reset Ck.	X	Fast/Slow	Х	Window Op.	
"As Fe	ound" HV	1016	V	Ter	nperature	72.6	°F	Fir	ial Voltage	1017 V
;	Threshold		nV		Window	10.0	mV			
HV Reado	ut:	Pulser Ref	500	V	P	ulser Ref.	e i denoi merci i energi e en dofede con	V		
		Meter	508	V ± 2%		Meter	1797	V ±2%		
				ANALOG	RATEMET	ER READ	OUT			
Pulser Fr	equency	Range Mi	ultiplier	"As Found'	' Reading	Corrected	d Reading	Cor	rection Facto	r*
500	CPM	I	LOG	505	CPM	~~~	CPM	In	dication only	1
500,000	CPM	I	.OG	500	CPM	*****	CPM	Ir	dication only	,
400,000	CPM	x 1	K	410	CPM	400	CPM		1.00	
100,000	CPM	x 1	K	110	CPM	100	CPM		1.00	
40,000	CPM	x 1	00	400	CPM		CPM		1.00	
10,000	CPM	x 1	00	100	CPM		CPM		1.00	
4,000	CPM	x 1	0	400	CPM		CPM		1.00	
1,000	CPM	x 1	0	100	CPM		CPM		1.00	
400	CPM	x 1		400	CPM		CPM		1.00	
100	CPM	x 1		100	CPM	***********************	CPM		1.00	
000000000000000000000000000000000000000	***************************************	***************************************			DIGITA	<i>4L SCALE</i>	R READOL	T.		
		Pulser Refe	rence	,	'As Found'	' Reading		Correction	n Factor	
•		40,000	CPM		39932	CPM		1.	00	
* Uncertainty	±10% Corr	ection Factor wit	hin ± 20%		***************************************	***************************************				
COMMEN	VTS: Ca	ilibration Inte	erval = 1 ye	ear 4π	Emission (DPM) is o	decayed to	printing da	itė.	
			destructions		ogeccooccobooccobooccopsossossoo	***************************************	***************************************	90000099999999	***************************************	
Attached D	ocuments:		Plateau Gra, Efficiency	pn			<i>_</i>			
Z1.31	Change 3 70	J. 1. 31	S 00 000		70	Jane 1 7%	- Olaran	, K	7	
Cali	ibrated By:	<i>7XXXX024</i> Vic	ダスメン。 toria Bran	l <i>ands</i> dt	Kev	viewed By:		i Kry	1 2	
	Date:	Augi	ust 24, 20)12		Date:	1/20	1/12		

Date Printed: 8/24/2012 Version 1.5.2

CAL PRNIA DEPARTMENT OF PUBLIC I ALTH RADIOLOGIC HEALTH BRANCH

1500 Capitol Avenue, Sacramento, CA

Detector Plateau Graph

Meter:

Mfg. Ludlum

Model: 2221

PLATEAU GRAPH

Serial # 163683

Date:

24-Aug-2012

Detector:

Mfg. Ludlum

Model: 44-10

Serial # PR169437

Due Date:

Aug 2013

TEST, MEASUREMENT AND DIAGNOSTIC EQUIPMENT

NIST Traceable Sources

Reference Equipment

Isotope	Serial#	Cert. Date	Activity	Units	DPM
Cs-137	5590	3/1/2001	1.010	uCi	1722377

Mfg	Model	Serial #	Cal. Due Date
Ludlum	500	142041	3/3/2012

Measurement Standards and test equipment used are traceable to the National Institute of Standards and Technology or to Physikalisch-Technische Bundesanstalt (PTE), to the extent allowed by the Institute's calibration facilities.

Distance to Sou	rce 0.50 in.	As Found HV 1016 V
Voltage Cs-13 (V) (CPM		Cs-137
600 6500	0	
700 1200	00 180,000	
750 14000 800 15000	160 000	
850 15500 900 16000	00 2 140,000	
950 1700	<u> </u>	<u>f</u>
1000 17000 1050 17500	······ 33 7 (31) (31) (31)	
1100 1750	80,000	· · · · · · · · · · · · · · · · · · ·
	60,000	<u> </u>
	40,000	
	20,000	
	0	

600

700

Voltage (V)

800

HV Range between knee+ 25V and knee + 50V

Final HV 1017 V

1000

1100

COMMENTS: 4π (DPM) Emission is decayed to printing date.

500

400

Health Physicist:

Date:

グラルム 人 ズムルッピオー Victoria Brandt

August 24, 2012

Reviewed By:

Date: 8/14//2

900

Date Printed: 8/24/2012

Version 1.5.2

Plateau Graph (1)

1200

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH RADIOLOGIC HEALTH BRANCH

1500 Capitol Avenue, Sacramento, CA

Detector Efficiency

Meter:

Mfg. Ludlum

Model: 2221

Serial # 163683

Calibration Date:

24-Aug-2012

Detector:

Mfg. Ludlum

Model: 44-10

in.

Serial # PR169437

Due Date:

Aug 2013

NIST TRACEABLE SOURCES

Isotope		Serial #	Cert. Date	Activity	Units	DPM
Am-241	γ	5588	3/1/2001	1.075	μCi	2343013
Ba-133	γ	5589	3/1/2001	1.048	μCi	1093539
Cs-137	y	5590	3/1/2001	1.010	μCi	1722377
Co-60	γ	5587	3/1/2001	1.073	μCi	523383

Measurement Standards and test equipment used are traceable to the National Institute of Standards and Technology or to Physikalisch-Technische Bundesanstalt (PTE), to the extent allowed by the Institute's calibration facilities.

EFFICIENCY CALCULATIONS

0.5	

Background Measurement		Isotope: Am-241 Measurement	Isotope: Ba-133 Measurement	Isotope: Cs-137 Measurement	Isotope: Co-60 Measurement
γ		γ	y	y	γ
срт		cpm	cpm	cpm	cpm
6000	1	170000	300000	170000	90000
6500	2	175000	350000	175000	90000
6000	3	170000	300000	170000	85000
7000	4	170000	300000	165000	90000
6500	5	175000	350000	170000	95000
***************************************	Average				
6400	(cpm)	172000	320000	170000	90000
	Std. Dev.				
418	(cpm)	2739	27386	3536	3536
	Net Efficiency	0.07068 (cpm)/dpm	0.2868 (cpm) (dpm	0.09499 (cpm)/dpm	0.1597 (cpm)/

% Efficiency	7.07%	for	Am-241	γ
% Efficiency	28.7%	for	Ba-133	γ
% Efficiency	9.50%	for	Cs-137	γ
% Efficiency	16.0%	for	Co-60	γ

COMMENTS: Emission (DPM) is decayed to printing date.

Alpha and beta source distance is 0.25 inch (6.4 mm). Gamma source distance is 0.5 inch (12.7 mm).

Health Physicist: Westona & Brandt Victoria Brandt

Reviewed By: $\frac{Rog_{44}R_{24}}{Date}$

August 24, 2012

Date Printed: 8/24/2012

Version 1.5.2

Efficiency (4)

Appendix B: SAMPLE ANALYSIS AND RESULTS

Table 14: Laboratory Results Summary

		Field	Cs-137		Ra-226 (Bi-214, 609 keV)		K-40	
Descriptive Name	Sample ID	Measurement (mR/hr)	Sample (pCi/g)	MDA ₉₅ (pCi/g)	Sample (pCi/g)	MDA ₉₅ (pCi/g)	Sample (pCi/g)	MDA ₉₅ (pCi/g)
Pre- Remediation: Co	ollected 3/2	20/2013						
Treasure Island, Site 12, Sample A	R98805	3.5	-0.235 <u>+</u> 0.105	1.11	7897 <u>+</u> 166	1.78	6.53 ± 3.22	12.0
Treasure Island, Site 12, Sample B	R98806	0.45	0.0225 <u>+</u> 0.13	0.119	100 ± 2	0.339	10.6 <u>+</u> 0.4	1.41
Treasure Island, Site 12, Sample C	R98807	0.41	0.0177 <u>+</u> 0.0190	0.104	75.8 ± 2	0.295	9.49 ± 0.34	1.17
Treasure Island, Site 12, Sample D	R98808	0.10	0.231 ± 0.003	0.0143	0.642 ± 0.022	0.066	9.31 ± 0.23	0.234
TI Sample E /Bottom of sod 11 cm depth	R98804	0.15	-0.0638 <u>+</u> 0.048	0.251	405 ± 8.5	0.335	9.83 ± 0.56	2.34
TI Sample E "Bottom" (20 cm depth)	R98803	0.11	-0.0285 <u>+</u> 0.014	0.0678	30.0 ± 0.6	0.162	10.4 ± 0.3	0.672
During Remediation:	Collected	3/21/2013						
TI Sample A – During remediation	R96216		-0.141 <u>+</u> 0.0485	0.301	706 <u>+</u> 14.9	0.429	10.6 ± 1.2	5.37
Post-Remediation: Co	ollected 3/	21/2013						
TI Sample A – Post Remediation	R96217		-0.000294 <u>+</u> 0.00462	0.0204	1.016 ± 0.028	0.0674	10.3 ± 0.2	0.255
TI Sample B – Post Remediation	R96218		0.355 ± 0.003	0.0164	3.36 ± 0.07	0.0835	$10.2 \pm 0.2_5$	0.288
TI Sample C – Post Remediation	R96219		< MDA	0.0724	38.0 ± 0.8	0.208	9.89 ± 0.29	0.821
TI Sample E – Post Remediation	R96215		$\begin{array}{c} 0.00570 \pm \\ 0.00735 \end{array}$	0.0368	6.79 ± 0.15	0.110	10.9 ± 0.3	0.387

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0214

 Investigator:
 Victoria Brandt
 RHB
 Requestor:
 Roger Lupo
 RHB

 PO box 997414.MS 7610
 CDPH - RHB, 1500 Capitol Av., MS 7610

 Sacramento
 CA 95899
 Sacramento
 CA 95814-5006

 Phone Number:
 916 440-7955
 Phone Number:
 916-440-7955

Site/Project Name: Treasure Island / Site 12

System No: Billing Agency: RHB

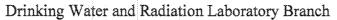
Samples Received by Lab: 3/21/2013

Parameter	Method	Result +/- CE	MDA 95	Units
	Sample ID: R 98805 Sample Type: Soil/Sediment	Time Collected: 3/20/2013	13:06 Sampling Point	; Sample A
Dry Wt/Wet Wt		0.933		
Cs-137	HASL Ga-01-R	-0.235 +/- 0.105	1.11	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV) HASL Ga-01-R	7897 +/- 166	1.78	pCi/g dry wt.
K-40	HASL Ga-01-R	6.53 ÷/- 3.22	12.0	pCi/g dry wt

Page 1 of 1

Task ID: 13-0214

⁽¹⁾ Precision criteria for these method were determined to be acceptable.


⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radio-nuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

State of California - Health and Human Services Agency

California Department of Public Health

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0215

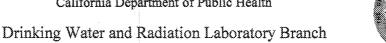
Investigator: Victoria Brandt	RHB	Requestor: Roger Lupo	RHB
PO box 997414.M	S 7610	CDPH - RHB, 1500 (Capitol Av., MS 7610
Sacramento	CA 95899	Sacramento	CA 95814-5006
Phone Number: 9	16 440-7955	Phone Number: 916	-440-7955
Site/Project Name: Treasure Is	land / Site 12		
System No:	Billing Agency: RHB	Samples Received by	/ Lab: 3/21/2013

Parameter	Method	Result +/- CE	MDA 95	Units
	Sample ID: R 98806 Sample Type: Soil/Sediment	Time Collected: 3/20/2013	13:24 Sampling Point	: Sample B
Dry Wt/Wet Wt		0.947		
Cs-137	HASL Ga-01-R	0.0225 +/- 0.0134	0.119	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	HASL Ga-01-R	100 ÷/~ 2.12	0.339	pCi/g dry wt.
K-40	HASL Ga-01-R	10.6 +/- 0.394	1.41	pCi/g dry wt

Page 1 of 1

Task ID: 13-0215

⁽¹⁾ Precision criteria for these method were determined to be acceptable.


⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radio-nuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

State of California - Health and Human Services Agency

California Department of Public Health

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0216

Investigator: Victoria Brandt

RHB

Requestor: Roger Lupo

RHB

PO box 997414.MS 7610

CDPH - RHB, 1500 Capitol Av., MS 7610 95814-5006

Sacramento CA 95899 Phone Number: 916 440-7955

Sacramento ÇA Phone Number: 916-440-7955

Site/Project Name: Treasure Island / Site 12

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0216-01	Sample ID: R 98807 Sample Type: Soil/Sediment	Time Collected: 3/20/2013	13:33 Sampling Point	:: Sample C
Dry Wt/Wet Wt		0.910		
Cs-137	HASL Ga-01-R	0.0177 +/- 0.019	90 0.104	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	HASL Ga-01-R	75.8 +/- 1.60	0,295	pCi/g dry wt.
K-40	HASL Ga-01-R	9.49 +/~ 0.339	9 1.17	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0217

Investigator: Victoria Brandt

RHB

95899

Requestor: Roger Lupo

RHB

PO box 997414.MS 7610

CDPH - RHB, 1500 Capitol Av., MS 7610 CA

Sacramento CA Sacramento

95814-5006

Phone Number: 916 440-7955

Phone Number: 916-440-7955

Site/Project Name: Treasure Island / Site 12

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0217-01	Sample ID: R 98808 Sample Type: Soil/Sediment	Time Collected; 3/20/2013	13:37 Sampling Point	: Sample D
Dry Wt/Wet Wt		0.940		
Cs-137	HASL Ga-01-R	0.0231 +/- 0.003	0.0143	pCi/g dry wt.
Ra-226 (Bi-214, 609 ke ^v	V) HASL Ga-01-R	0.642 ±/- 0.02	19 0.066	pCi/g dry wt.
K-40	HASL Ga-01-R	9.31 +/- 0.229	0.234	pCi/g dry wt

⁽I) Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0213

Investigator: Victoria Brandt

RHB

Requestor: Roger Lupo

RHB

PO box 997414.MS 7610

95899

CDPH - RHB, 1500 Capitol Av., MS 7610

Sacramento

Sacramento CA 95814-5006

Phone Number: 916 440-7955

CA

Phone Number: 916-440-7955

System No:

Site/Project Name: Treasure Island / Sample E

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0213-01	Sample ID: R 98803 Sample Type: Soil/Sediment	Time Collected: 3/20/2013	10:38 Sampling Point	: Sample E "Bottom"
Dry Wt/Wet Wt		0.919		
Cs-137	HASL Ga-01-R	-0.0285 +/- 0.014	42 0.0678	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	V) HASL Ga-01-R	30.0 +/- 0.636	0.162	pCi/g dry wt.
K-40	HASL Ga-01-R	10.4 +/- 0.283	7 0.672	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particular radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

State of California - Health and Human Services Agency

California Department of Public Health

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0212

Investigator: Victoria Brandt

RHB

CA

Requestor: Roger Lupo

RHB

PO box 997414.MS 7610

CDPH - RHB, 1500 Capitol Av., MS 7610

Sacramento CA 95814-5006

Phone Number: 916 440-7955

Phone Number: 916-440-7955

Sacramento

Site/Project Name: Treasure Island / Bottom of sod, 11 cm depth

95899

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0212-01	Sample ID: R 98804 Sample Type: Soil/Sediment		10:50 Sampling Point:	
Dry Wt/Wet Wt		0.886		
Cs-137	HASL Ga-01-R	-0.0638 +/- 0.048	0.251	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	/) HASL Ga-01-R	405 +/- 8.50	0.335	pCi/g dry wt.
K-40	HASL Ga-01-R	9.83 +/~ 0.555	2.34	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

State of California - Health and Human Services Agency

California Department of Public Health

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

Drinking Water and Radiation Laboratory Branch

FINAL Analysis Results Report for Task ID. 13-0220

Investigator: Jeff Wong

RHB

Requestor: Roger Lupo

RHB

CDPH, 850 Marina Bay Parkway Richmond

CA 94804 CDPH - RHB, 1500 Capitol Av., MS 7610 Sacramento

95814-5006

Phone Number: 510-620-3423

CA

Phone Number: 916-440-7955

Site/Project Name: Treasure Island / Bldg 1303 System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0220-01	Sample ID: R 96216 Sample Type: Soil/Sediment	Time Collected: 3/21/2013		:: Sample A-During remediation
Dry Wt/Wet Wt		0.9324		
Cs-137	HASL Ga-01-R	-0.141 ÷/- 0.060	0.310	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	HASL Ga-01-R	706 +/- 14.9	0.429	pCi/g dry wt.
K-40	HASL Ga-01-R	10.6 +/- 1.18	5.37	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0221

Investigator: Jeff Wong

RHB

Requestor: Roger Lupo

RHB

CDPH, 850 Marina Bay Parkway

CDPH - RHB, 1500 Capitol Av., MS 7610

Richmond CA Sacramento

95814-5006 CA

Phone Number: 510-620-3423

Phone Number: 916-440-7955

Site/Project Name: Treasure Island / Bldg 1303

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0221-01	Sample ID: R 96217 Sample Type: Soil/Sediment	Time Collected: 3/21/2013	10:56 Sampling Point	: Sample A-Post remediation
Dry Wt/Wet Wt		0,9278		
Cs-137	HASL Ga-01-R	-0.000294 +/- 0.004	162 0.0204	pCi/g dry wt.
Ra-226 (Bi-214, 609 ke)	V) HASL Ga-01-R	1.016 +/- 0.028	0.0674	pCi/g dry wt.
K-40	HASL Ga-01-R	10.3 +/- 0.251	0.255	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particular radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0222

Investigator: Jeff Wong

RHB

Requestor: Roger Lupo

RHB

Richmond

CDPH, 850 Marina Bay Parkway

CDPH - RHB, 1500 Capitol Av., MS 7610 Sacramento

95814-5006

CA 94804

Phone Number: 510-620-3423

Phone Number: 916-440-7955

CA

Site/Project Name: Treasure Island / Bldg 1303

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0222-01	Sample ID: R 96218 Sample Type: Soil/Sediment	Time Collected: 3/21/2013	11:26 Sampling Poin	t: Sample B- Post Remediation
Dry Wt/Wet Wt		0.9597		
Cs-137	HASL Ga-01-R	0.0355 +/- 0.002	275 0.0164	pCi/g dry wt.
Ra-226 (Bi-214, 609 ke)	V) HASL Ga-01-R	3.36 +/- 0.075	0.0835	pCi/g dry wt.
K-40	HASL Ga-01-R	10.2 +/- 0.249	0.288	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940.

FINAL Analysis Results Report for Task ID. 13-0223

Investigator: Jeff Wong

RHB

Requestor: Roger Lupo

RHB

CDPH, 850 Marina Bay Parkway

CDPH - RHB, 1500 Capitol Av., MS 7610 Sacramento CA

Richmond

CA 94804

95814-5006

Phone Number: 510-620-3423

Phone Number: 916-440-7955

Site/Project Name: Treasure Island / Bldg 1306

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0223-01	Sample ID: R 96219 Sample Type: Soil/Sediment	Time Collected: 3/21/2013	12:25 Sampling Point	: Sample C-Post Remediation
Dry Wt/Wet Wt		0.9494		
Cs-137	HASL Ga-01-R	0.0148 +/- 0.008	880 0.0724	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	/) HASL Ga-01-R	38.0 ÷/- 0.802	0.208	pCi/g dry wt.
K-40	HASL Ga-01-R	9,89 ÷/- 0,293	0.821	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particilar radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Drinking Water and Radiation Laboratory Branch

850 Marina Bay Parkway, Richmond, CA 94804 Phone: (510) 620-2911 Fax: (510) 620-2940

FINAL Analysis Results Report for Task ID. 13-0219

Investigator: Jeff Wong

RHB

Requestor: Roger Lupo

RHB

CDPH, 850 Marina Bay Parkway

CA 94804 CDPH - RHB, 1500 Capitol Av., MS 7610 95814-5006

Richmond Phone Number: 510-620-3423

Sacramento CA Phone Number: 916-440-7955

Site/Project Name: Treasure Island / Bldg 1128

System No:

Billing Agency: RHB

Parameter	Method	Result +/- CE	MDA 95	Units
Lab No: 13-0219-01	Sample ID: R 96215 Sample Type: Soil/Sediment	Time Collected: 3/20/2013	12:20 Sampling Point	: Sample E-Post Remediation
Dry Wt/Wet Wt		0.8991		
Cs-137	HASL Ga-01-R	0.00570 +/- 0.000	735 0.0368 .	pCi/g dry wt.
Ra-226 (Bi-214, 609 keV	/) HASL Ga-01-R	6.79 +/- 0.149	0.110	pCi/g dry wt.
K-40	HASL Ga-01-R	10.9 +/- 0.272	0.387	pCi/g dry wt

⁽¹⁾ Precision criteria for these method were determined to be acceptable.

⁽²⁾ CE is the counting error at the 95% confidence level as defined in Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

⁽³⁾ MDA95 is the sample specific minimum detectable activity at the 95% confidence level which is the LLD95 devided by 2.22, the efficiency, and the yield, and may include factors for abundance, decay, and ingrowth, dependent on the particular radionuclide. LLD95 is defined in section 7010G, Standard Methods for the Examination of Water and Wastewater, American Water Works Association, 21st Ed., 2005, where Sb is the aquare root of the instrument background count rate.

Appendix C: VARSKIN ANALYSIS

RAU Staff Soil Sampling, T. I., Site 12

Varskin 4

Date: 7/1/2013 Time: 8:19:34 AM

Treasure Island Location E March 2013 Source Activity

Disk Source Geometry

Source Diameter: 1.50E+00 cm
Source Area: 1.77E+00 cm²
Irradiation Time: 1.00E+00 hr
Irradiation Area: 1.00E+00 cm²

Skin density thickness: 7.00E+00 mg/cm²
Air Gap Thickness: 2.00E-01 cm

RESULTS FROM ALL SOURCES

	Initial Dose Rate	Dose (No Decay)	Decay-Corrected Dose
Beta	2.79E+02 rad/h	2.79E+02 rad	1.74E+02 rad
Photon	1.18E+00 rad/h	1.18E+00 rad	6.71E-01 rad
Total	2.80E+02 rad/h	2.80E + 02 rad	1.74E+02 rad

RESULTS FROM INDIVIDUAL SOURCES

Nuclide: Bi-214 Half Life: 0.3316667 h

Average Beta Energy: 0.6134564 MeV X-99 Distance: 0.5035018 cm Source Strength: 3.10E-02 mCi/cm²

	Initial Dose Rate	Dose (No Decay)	Decay-Corrected Dose
Beta	7.32E+01 rad/h	7.32E+01 rad	3.08E+01 rad
Photon	5.99E-01 rad/h	5.99E-01 rad	2.52E-01 rad
Total	7.38E + 01 rad/h	7.38E+01 rad	3.10E+01 rad

Nuclide: Pb-214
Half Life: 0.4466667 h
Average Beta Energy: 0.1317466 MeV
X-99 Distance: 0.09770415 cm
Source Strength: 3.10E-02 mCi/cm²

	Initial Dose Rate	Dose (No Decay)	Decay-Corrected Dose
Beta	1.27E + 02 rad/h	1.27E+02 rad	6.45E+01 rad
Photon	3.31E-01 rad/h	3.31E-01 rad	1.68E-01 rad
Total	1.27E+02 rad/h	1.27E+02 rad	6.46E+01 rad

Nuclide: Pb-210 Half Life: 195481.8 h Average Beta Energy: 0.011949834 MeV X-99 Distance: 0.0019008148 cm Source Strength: 3.10E-02 mCi/cm²

	Initial Dose Rate	Dose (No Decay)	Decay-Corrected Dose
Beta	0.00E+00 rad/h	0.00E + 00 rad	0.00E+00 rad
Photon	2.51E-01 rad/h	2.51E-01 rad	2.51E-01 rad
Total	2.51E-01 rad/h	2.51E-01 rad	2.51E-01 rad

Nuclide: Bi-210 Half Life: 120.288 h

Average Beta Energy: 0.3890079 MeV X-99 Distance: 0.2046475 cm Source Strength: 3.10E-02 mCi/cm²

	Initial Dose Rate	Dose (No Decay)	Decay-Corrected Dose
Beta	7.88E+01 rad/h	7.88E+01 rad	7.86E+01 rad
Photon	0.00E+00 rad/h	0.00E + 00 rad	0.00E+00 rad
Total	7.88E + 01 rad/h	7.88E+01 rad	7.86E+01 rad